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Accelerating rates of climate change and a paucity of whole-community

studies of climate impacts limit our ability to forecast shifts in ecosystem

structure and dynamics, particularly because climate change can lead to

idiosyncratic responses via both demographic effects and altered species

interactions. We used a multispecies model to predict which processes and

species’ responses are likely to drive shifts in the composition of a space-

limited benthic marine community. Our model was parametrized from

experimental manipulations of the community. Model simulations indicated

shifts in species dominance patterns as temperatures increase, with projected

shifts in composition primarily owing to the temperature dependence of

growth, mortality and competition for three critical species. By contrast,

warming impacts on two other species (rendering them weaker competitors

for space) and recruitment rates of all species were of lesser importance in

determining projected community changes. Our analysis reveals the impor-

tance of temperature-dependent competitive interactions for predicting

effects of changing climate on such communities. Furthermore, by identify-

ing processes and species that could disproportionately leverage shifts in

community composition, our results contribute to a mechanistic understand-

ing of climate change impacts, thereby allowing more insightful predictions

of future biodiversity patterns.
1. Introduction
Climate change has already led to widespread alterations of biological systems [1],

and higher rates of global warming are predicted in the next century [2]. Ecosys-

tem impacts of climate change include alterations to community composition: as

species’ ranges shift poleward [1,3,4], particular locations have, in general, seen

increases in low-latitude species and decreases in high-latitude species [3,5,6].

However, observations and manipulative experiments have highlighted the idio-

syncrasy of species’ responses [7–10], indicating that categorizing species based

on single characteristics, such as their current geographical affinities, is inadequate

for forecasting future community structure. Thus, the most insightful predictions

of future changes in species’ abundances and community composition require an

understanding of the principal mechanisms underlying warming effects. Here, we

take a whole-community approach to mechanistically evaluate impacts of climate

warming on multiple component species and their interactions.

Studies of the biological impacts of climate change have focused largely

on direct effects on single species [10,11], despite evidence that including

species interactions can greatly improve the accuracy of predicted impacts [8,12].

Furthermore, interspecific interactions themselves are often dependent on environ-

mental conditions [13–17]. For example, competitive outcomes may reverse along

gradients in surface topography [18], moisture availability [19], nutrient availabi-

lity [12], CO2 [20], salinity [21] and temperature [8,22,23]. Climate-driven changes

in species dominance hierarchies could lead to marked differences in the
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composition of strongly competitive communities, such as

assemblages of foundational plants and invertebrates. Species

interactions, along with demographic processes, are likely to

underlie community responses that have been observed in

in situ warming experiments [7,12,19,24,25]. However, the rela-

tive importance of individual mechanisms (e.g. changes in

survival rate versus competitive ability) is not easily discernible

in such studies.

We used a simulation modelling approach to predict

impacts of climate warming on the composition of a marine

community, and we combined these simulations with a sensi-

tivity analysis to assess the primary mechanisms underlying

predicted compositional shifts. Our marine study system

is composed of sessile invertebrates that inhabit subtidal

hard substrata, including human-made structures (e.g. docks

and piers). We evaluated effects of climate warming on five

species of sessile invertebrates that collectively occupy the

majority of available space in our Bodega Harbor (California,

USA) study system, comprising four colonial tunicates (Botryl-
loides violaceus, Didemnum vexillum, Diplosoma listerianum and

Distaplia occidentalis) and an encrusting bryozoan (Watersipora
subtorquata); for brevity, all are referred to hereafter by genus.

Because they are subtidal and space-limited [26,27], species

in this community are likely to respond to increasing ocean

temperature via changes in processes responsible for space

acquisition and maintenance. We adapted a community

model developed by Crowley et al. [28] so that it described

our study system, and we parametrized this model with data

collected in field and laboratory microcosm experiments.

We calculated model projections using parameter values

corresponding to each of three temperatures: an ambient temp-

erature (148C), and two increased temperatures predicted by

warming scenarios (þ2.58C and þ48C [2]). We used the

model outcomes and results of the sensitivity analysis to

address three specific questions. First, which species are likely

to increase versus decrease in the community as the ocean

warms? Second, what is the relative role of four key population-

and community-level processes in changing predicted species

dominance patterns? Third, which of the five species sustain

the most significant temperature-dependent alterations in

demographic rates and interaction strengths, leading to pre-

dicted dominance shifts? Identifying the most important

mechanisms (i.e. processes and species) is a step towards

improving predictions about trajectories of climate-driven

shifts in community composition [29].
2. Methods
We formulated a spatially implicit community model in an

open population based on the framework advanced by Crowley

et al. [28]. The model incorporates four main processes important

to dynamics in space-limited, hard substrate benthic commu-

nities of sessile organisms [30]: recruitment (of propagules),

growth (i.e. lateral growth into unoccupied space), overgrowth

(i.e. interspecific competition) and mortality. The model of

Crowley et al. [28] assumed a closed population of sessile organ-

isms, but our model also includes recruitment from an external

larval pool, reflecting the dynamics of a small patch of habitat

within a larger metacommunity. Our model consists of a set of

coupled differential equations; following the notation of Crowley

et al. [28], the two-species version of this model would be

dfi
dt
¼ fibiAþ fifjðcijbi � c jibjÞ � fidi þ riA ð2:1aÞ
and

dfj
dt
¼ fjbjAþ fifjðcjibj � cijbiÞ � fjdj þ rjA; ð2:1bÞ

where fi is the proportion of space occupied by species i, bi is the

growth rate of species i into unoccupied space (bi � 0), cij is

the overgrowth competition coefficient (cij � 0) describing the

reduction in growth rate experienced by species i when in contact

with another species j, di is the mortality rate of species i leading

to a retreat from occupied space (di � 0), ri is the recruitment rate

of species i describing the settlement of new individuals onto

unoccupied space and A is the total amount of unoccupied

space (A ¼ 1 2 fi 2 fj).
We expanded the two-species framework of Crowley et al.

[28] into a system of five equations that predict the dynamics

of a five-species community. This was accomplished by adjusting

the terms denoting the total occupied area (A ¼ 1 2 f1 2

f2 2f3 2f4 2 f5) and including additional terms of the form

fifj(cijbi 2 cjibj) in each equation to describe the 20 pairwise

interactions between five competing species.

We parametrized our model using values determined via

field observations for recruitment (r) and disturbance (for

which frequency and intensity were varied within each simu-

lation), and separate laboratory experiments for growth (b),

mortality (d ) and overgrowth competition (c) (see the electronic

supplementary material, appendix S1 and table S1) [31,32].

Across 105 simulations at each temperature, we determined the

mean population density of each species after 10 months (41

weeks) and the proportion of simulations in which each species

was dominant (occupied greater than or equal to 90% of space

in week 41). Outcomes of the model runs at ambient (148C)

temperature were compared with species’ abundances on field

plates deployed for the same period. To assess the importance

of competition, we ran an additional set of model simulations

in the absence of competition (c ¼ 0). Finally, we conducted a

global sensitivity analysis (following the approach of Harper

et al. [33]) to determine the relative importance of each process

and species in explaining projected impacts of ocean warming

on species dominance patterns.

Additional methodological details are available in appendix

S1 of the electronic supplementary material.
3. Results and discussion
Our results indicate the potential for large shifts in species

dominance patterns and community composition primarily

driven by the temperature dependence of growth, mortality

and competitive ability for three key species. Detecting these

shifts required the incorporation of species interactions. Repre-

sentative model runs using mean parameter values illustrate

typical community trajectories (see the electronic supplemen-

tary material, figure S1): Diplosoma (an early successional

species [34]) initially occupied the majority of space and then

was supplanted by one of the competitively dominant species

(Didemnum, Watersipora or Botrylloides). Although compo-

sitional patterns shifted with warming, Diplosoma remained

an effective early colonist at increased temperature.

The general dynamics shown in figure S1 of the electronic

supplementary material (i.e. eventual dominance by a single

species on the time scale of 1 year) are typical of results

from the model; however, a range of outcomes was possible

within the distribution of 105 random simulations at each

temperature, as shown in figure 1. Specifically, in the model

solutions with randomly drawn parameters, the mean pro-

portion of space occupied by each species after 10 months,

and the proportion of simulations in which each species was

http://rspb.royalsocietypublishing.org/
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dominant (greater than or equal to 90% space occupied),

changed with increasing temperature (figure 1a,c). In ambient

temperature conditions (14.08C), Didemnum attained the high-

est population densities. At 16.58C, Diplosoma and Watersipora
increased in density, displacing Didemnum as the most

dominant species, whereas at 188C, Botrylloides was most abun-

dant, overtaking Diplosoma and Watersipora. Under warming,

Didemnum dominance decreased and evenness increased

(Pielou’s J ¼ 0.63, 0.74 and 0.78 at 14, 16.5 and 18.08C, res-

pectively). Distaplia had a mean proportional density of less

than 0.01 at all temperatures and was never dominant. In

summary, under progressively warmer conditions, Botrylloides
increased, Didemnum decreased, Distaplia remained at very

low abundance, and densities and dominance patterns of Diplo-
soma and Watersipora waxed and waned across the temperature

treatments.

The global sensitivity analysis allowed us to identify the

processes and species whose responses to warming most

strongly influenced predicted changes in community structure

(figure 2). Across these comparisons, the mortality parameters

for Botrylloides and Diplosoma, and the growth parameters for

these species and Watersipora, were consistently among the

top half of parameters that accounted for 80 per cent of

the total importance. By contrast, the recruitment parameters

for all species were of lower importance. The predicted changes

in community composition with increasing temperature were
also keenly dependent on changes in interspecific interaction

strengths. The competition coefficients describing the pairwise

interactions between Botrylloides, Diplosoma and Watersipora
were consistently among the one-third of parameters that rep-

resented 60 per cent of the total importance. Furthermore,

when model simulations were obtained without interspecific

competition, the predicted community composition was very

different (figure 1b,d ): Diplosoma was predicted to remain over-

whelmingly dominant at all temperatures, with Didemnum,
Distaplia and now also Watersipora all predicted to decline to

extremely low densities under warming. Community diversity

was also lower in the absence of competition when compared

with the full model runs: Shannon diversity for simulations

with (without) competition was 1.02 (1.01), 1.19 (0.55) and

1.26 (0.87) at 14, 16.5 and 18.08C, respectively.

Together, these analyses testing the importance of particu-

lar processes and species underlying community alterations

indicate that post-settlement space acquisition and mainten-

ance are of great importance for determining predicted shifts

with climate warming, and these processes leverage changes

through particular species (i.e. Botrylloides, Diplosoma and

Watersipora). By contrast, Distaplia and Didemnum were of less

importance in explaining temperature-driven changes in the

community, particularly beyond 16.58C. Competition par-

ameters for these latter two species had consistently low

importance, and all parameters related to Distaplia were

http://rspb.royalsocietypublishing.org/
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among the least important 20 per cent of processes for all three

comparisons. The low importance of Distaplia suggests that

there was a low marginal value to adding increasingly rare

species to our community simulations, although it is possible

that there are currently rare species that will become more

common under future warming. Persistence of rare, sub-

dominant species may occur when there are species-specific

trade-offs between competition and colonization dynamics

[34,35]. To some extent, we detected trade-offs within this

group of five species, particularly between overgrowth rank

and colonization (i.e. recruitment; electronic supplementary

material, table S1). However, Distaplia, the species with the

highest recruitment rate, had the lowest competitive ability at
all temperatures and was of low importance to predicted

climate-driven shifts in community composition. Given that

Distaplia is the only species among the five considered here

that is native to our study system, future research should

continue to address whether native species are specifi-

cally inhibited in warmer conditions when compared with

non-native species [36].

Model simulations at ambient temperature (148C) afforded

a reasonably good match to field data of current community

composition. The average abundance from 105 simulations

for the period 1 May–15 February did not differ significantly

(based on a comparison with the 95% confidence interval)

from values quantified in a field experiment conducted over

the same interval for four of the five species (the exception

being Didemnum, for which proportional space occupancy

was over-predicted by approx. 0.15 on average); abundances

of all five species fell within the range of values observed in

the field (figure 3). Although this comparison lends credibility

to our choice of processes driving community structure and our

empirical approach to model parametrization, we acknowledge

that there are several additional processes that are likely to

modify the model projections. Importantly, seasonal variability

in temperature and corresponding changes to parameter values

would ideally be incorporated in future forecasting models.

Although we lacked appropriate data to confidently incorpor-

ate variability in our warming simulations, including

seasonality improved our match between simulated and field

data at ambient temperature (see the electronic supplementary

material, appendix S2 and figure S2). In addition, disturbances

such as predation [13] and extreme events (e.g. heat waves [37])

are expected to increase in the next century, concurrent with

gradual warming, and have been shown to influence commu-

nity composition [38,39]. Our analyses suggest that disturbance

frequency is among the 15 per cent of most important processes

determining warming-related changes in community compo-

sition, and disturbance intensity was of lower importance,

but still among the upper one-third of processes that explain

50 per cent of the variation in community outcomes between

temperatures. Increased disturbance could favour species best

http://rspb.royalsocietypublishing.org/
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at capitalizing on increased open space (e.g. the opportunistic

species, Diplosoma). Alternately, disturbance could favour the

most resistant species (e.g. Watersipora best resisted a simulated

future heat wave, of our test species [40]), leading to selective

mortality and consequent declines in recruitment rates as

source populations of the less resistant species dwindle. It is

also important to note that these models and the underlying

empirical data reflect the immediate imposition of a 2.5–48C
increase in mean temperature. In reality, temperature increases

of this amount are expected over a 40–90 year period of

warming [2], and acclimation and adaptation have the

potential to alter the temperature-dependent values used to

parametrize our model.

To the degree that our model analysis—grounded in

comparisons of field data to simulations run at ambient

temperature—is indicative of the relative effects of future cli-

mate warming, it allows us to predict the trajectory of

community composition as well as the processes and species

that will most strongly affect those changes. In particular, our

results underscore the importance of accounting for tempera-

ture-dependent changes in interspecific interaction strengths

when making predictions about warming effects, a level of
context dependency that continues to be neglected in climate

change studies and may be particularly important between

species that compete for a common resource [41]. Furthermore,

our analysis should promote the development of more edu-

cated hypotheses about responses to climate warming at

even larger scales. For example, diverse assemblages of associ-

ated species depend on shelter and trophic subsidies provided

by basal foundation species, including epibenthic marine

invertebrates [42] and primary producers in analogous plant-

dominated systems [43]. Our results indicate the likely trajec-

tories for common basal species in an epibenthic community,

and the mechanisms that may drive changes in these and

associated species; predictions that should be tested via

future experiments or baseline comparisons.
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ance, and M. Baskett, M. Bracken, K. Edwards, L. Miller, E. Sanford,
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ment. C.J.B.S. was funded by an AAUW American Fellowship, the
California Ocean Protection Council (grant no. DOE-ER64982) and
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Bodega Marine Laboratory, University of California at Davis.
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